基于隐马尔可夫模型的陀螺仪漂移预测  被引量:2

Gyro Drift Prediction Based on Hidden Markov Model

在线阅读下载全文

作  者:胡昌华[1] 李斌[1] 周志杰[1] 王志远[1] 

机构地区:[1]第二炮兵工程学院302教研室,陕西西安710025

出  处:《系统仿真技术》2011年第3期177-182,共6页System Simulation Technology

基  金:国家自然科学基金重点课题资助项目(60736026)

摘  要:针对陀螺仪实验数据的有限性和非平稳性,提出了基于自回归(AR)模型和隐马尔科夫模型(HMM)的陀螺漂移预测方法。首先利用AR模型参数能够敏感状态变化规律的特性,提取陀螺漂移数据的自回归系数作为特征量;然后对具有混合高斯输出的HMM进行训练;最后对陀螺仪的状态进行加权预测,改进了趋势预测的方法,解决了陀螺漂移在小样本数据条件下的预测问题。实验分析了加权模型阶数和HMM状态数对陀螺漂移预测结果的影响,并验证了预测方法的有效性。For the finiteness and nonstationarity of the gyro testing data,The Autoregressive (AR) model and Hidden Markov Model (HMM) are employed to forecast the gyro drift.Firstly,AR model is used to derive the AR coefficients of the gyro drift data as eigen element,for its sensitivity to the change of condition;and then the Hidden Markov Model with mixture-of-Gaussians output is trained by the preceding results;finally,the gyro drift tendency is predicted by the modified weighed prediction method,which resolves the problem of gyro drift prediction under small sample condition.The influence of different rank on weighed model and number of states on HMM are also investigated in simulation,which also demonstrated the validity of the proposed method.

关 键 词:陀螺仪漂移 自回归模型 隐马尔可夫模型 加权预测 

分 类 号:TP202[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象