检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋磊[1]
机构地区:[1]济南大学管理学院,济南250022
出 处:《统计与决策》2011年第17期37-39,共3页Statistics & Decision
基 金:国家自然科学基金资助项目(60973042);全国统计科学研究计划资助项目(2009LY061);山东省软科学计划资助项目(2009RKB096);济南市软科学计划资助项目(200817066)
摘 要:为了解决支持向量机算法在大样本处理的"过学习"现象,文章设计出在并行系统中使用的多分类器支持向量机算法,应用多支持向量机分类器系统代替单一分类器,解决了大样本数据集上学习内存开销大、训练速度慢的缺点;同时,提出了一种自组织选择性融合算法,根据终止法则找到最优复杂度的融合模型,自主更新各分类器并调整其分类性能,把各分类器的分类结果融合为最终的分类,有效解决了大样本多分类器融合受子样本分布状态影响、各分类器学习能力相差过大的缺点,从而提高了训练效率和分类效率。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.60.240