基于递推参数辨识的齿轮箱故障在线检测  

Gearbox Fault Online Detection Based on Recursive Parameters Identification

在线阅读下载全文

作  者:原菊梅[1,2] 潘宏侠[1] 

机构地区:[1]中北大学机械工程与自动化学院,太原030051 [2]太原工业学院自动化系,太原030008

出  处:《计算机工程》2011年第15期235-237,共3页Computer Engineering

基  金:国家自然科学基金资助项目(50575214)

摘  要:为实现齿轮箱故障的在线检测,提出基于递推AR模型参数辨识的齿轮箱振动信号在线辨识方法。对实验室的齿轮箱进行不同工况下振动信号的检测,利用最优辅助变量法确定其自回归模型的阶次和模型参数的初值,以自回归模型系数作为状态变量,采用Kalman滤波器技术进行在线递推参数辨识。实验结果表明,该方法中参数变化量的2-范数会发生突变,能检测出齿轮磨损和轴承外圈剥落的故障。I In order to achieve gearbox fault online detection, the method of gearbox vibration signal online identification based on recursive AR model parameters identification is presented. The different condition vibration signals of the laboratory gearbox are detected. Then the order of auto-regression model and the initial values of model parameters are determined by the optimal instrumental variable approach for these detect signals. On these foundations, recursive parameter online identification based on Kalman filter is implemented taking coefficients of the auto-regression model as the states variables. Meanwhile, gearbox fault online detection is realized depends on the 2-norm of model parameters change. And two kinds of faults that peeling off the bearing outer ring and gear wear are analyzed. Results show that their 2-norm of model parameters change for two failures happened mutation.

关 键 词:递推参数辨识 齿轮箱 振动信号 KALMAN滤波器 故障在线检测 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象