核判别保局投影的人脸识别算法  被引量:1

Kernel Discriminant locality preserving projections algorithm for face recognition

在线阅读下载全文

作  者:郭志强[1] 杨杰[1] 

机构地区:[1]武汉理工大学信息工程学院,湖北武汉430070

出  处:《电路与系统学报》2011年第4期24-29,共6页Journal of Circuits and Systems

基  金:国家自然科学基金资助项目(50775167);湖北省科技攻关资助项目(2007A101c52)

摘  要:针对人脸识别中的特征提取问题,提出了核判别保局投影算法,即KDLPP。该算法通过核技巧将人脸样本映射到高维空间,在高维空间中有效地结合人脸局部的流形结构和人脸的判别信息构建了新的目标函数,其优点是在保持人脸流形结构的基础上,充分利用了样本的类别信息,并采用核方法提取了人脸的非线性特征。在ORL和UMIST人脸库上的实验表明,该方法的识别率整体优于LPP、DLPP和KLPP。A new face image feature extraction and recognition algorithm based on kernel discriminant locality preserving projections is proposed,in which face images are projected into high dimensional feature spaces by using kernel trick.Then,in kernel space a new objective function is constructed with the face manifold local structure information and the labels' information.The advantage of the method is that the face manifold is preserved and the label information is used,at the same time,non-linear feature is abstracted.Experiments have been done on ORL and UMIST,the experimental results show that KDLPP is powerful than LPP,DLPP and KLPP.

关 键 词:保局投影 核技巧 人脸识别 小样本问题 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象