检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《光学精密工程》2011年第8期1867-1873,共7页Optics and Precision Engineering
基 金:航天科技重点创新基金资助项目(No.CASC0105)
摘 要:针对现有磁罗盘罗差补偿方法成本高、效率低和全姿态补偿能力不足的问题,提出了一种基于几何变换的全姿态罗差补偿方法。首先,根据外磁干扰对磁传感器采样值的影响,建立了几何变换罗差补偿模型,将罗差补偿参数由12个减少到9个。其次,将牛顿法算子引入到粒子群算法中建立了混合粒子群优化算法,采用粒子群算法选取优化参数初始值,以牛顿法算子快速逼近最优值。最后,使用提出的混合粒子群优化算法对几何变换参数进行优化求解,并利用几何变换补偿模型对磁罗盘磁航向测量误差进行补偿。实验结果表明,采用该补偿方法无需外部辅助航向姿态信息,可在3min内实现全姿态罗差补偿,并将磁航向测量误差降低为补偿前的1/8~1/10,在罗差补偿精度和速度上优于传统补偿方法,满足了航姿系统的需求。To overcome the shortcomings of the existing magnetic deviation compensation methods in high costs,low efficiency and insufficient tilting compensation ability,a new method based on geometric transformation was proposed to compensate the attitude magnetic deviation of the digital magnetic compass.Firstly,the effect of the magnetic interference on the output of a magnetic sensor was analyzed and a geometric transformation model for the compass deviation was established to reduce the number of magnetic deviation parameters from 12 to 9.Then,a hybrid algorithm for solving these 9 parameters was proposed,in which the Particle Swarm Optimization(PSO) algorithm was taken to adjust the initial value and the Newton algorithm was used to accelerate the convergence process.Finally,the compensation method was used to compensate the magnetic heading error.The experimental results show that the method can achieve the all attitude magnetic deviation compensation without other assisting magnetic heading information,the compensation time is less than 3 min and the magnetic heading error is 1/8~1/10 that before compensation.The method is prior to traditional method in the speed and accuracy and satisfies the requirement of the system for attitude and heading reference.
关 键 词:数字磁罗盘 罗差补偿 混合粒子群优化算法 参数优化
分 类 号:V241.61[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7