检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学自动化学院,江苏南京210014
出 处:《控制理论与应用》2011年第8期1081-1086,共6页Control Theory & Applications
基 金:国家自然科学基金资助项目(60804019);南京理工大学卓越计划;紫金之星资助项目(AB39120)
摘 要:针对多站纯方位被动定位与跟踪问题,给出了一种基于均匀重采样和带自适应因子的改进型粒子滤波算法.首先,基于无迹卡尔曼(UKF)粒子滤波器,将参考分布融入最新观测信息,得到符合真实状态的后验概率分布;借助重采样和使用鲁棒估计,改善了粒子滤波的退化问题.其次,引入自适应因子以调整UKF的状态模型协方差与观测模型协方差的比例,得到较高精度的概率分布.仿真结果表明,改进的粒子滤波算法能够实现多站纯方位被动跟踪,比传统非线性滤波器有更高的跟踪精度.For the problem of bearings-only passive localization and tracking in multiple stations, we propose an improved particle filter algorithm with an adaptive factor based on evenly re-sampling. In the unscented Kalman filter(UKF) particle filter, the posterior probability distribution of true state-values is obtained by integrating the reference distribu- tion with the latest observed information. The degeneracy phenomenon in the particle filter is relieved by re-sampling and robust estimation approaches. By introducing an adaptive factor for adjusting the proportion between the state-model covariance and the observation-model covariance of UKF, we obtain a probability distribution with higher precision. Simulation results show that the proposed particle filter algorithm provides higher precision than the traditional nonlinear filters in bearings-only passive localization and tracking for multiple stations.
分 类 号:TN713[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15