检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中山大学信息科学与技术学院,广州510275 [2]中山大学数学与计算科学学院,广州510275 [3]中原工学院计算机学院,郑州450007
出 处:《中国图象图形学报》2011年第9期1722-1728,共7页Journal of Image and Graphics
基 金:国家自然科学基金项目(60975083);国家自然科学基金-广东省自然科学联合项目(U0835005)
摘 要:针对带噪声图像分割结果不理想的现象,提出一种对带不同类型噪声的图像都能进行有效分割的变分模型。首先扩展了Chan-Vese(CV)模型的能量泛函,然后在数值求解过程中,引入一个辅助变量与水平集方法相结合,采用高效和无条件稳定的MOS算法,提高精度和计算效率。对带一定强度噪声的图像进行地分割实验,并与CV变分模型的分割结果进行比较。结果表明,该新变分模型较好地克服了噪声干扰的影响,对带噪图像的分割是有效的,迭代次数少,速度快且提高了目标分割的准确性。Due to dissatisfactory results of segmenting noisy images, a new variational method for segmenting images corrupted by various noises is presented. First,the energy function of the proposed model based on Chan-Vese(CV) model is modified. Then in order to improve the computing efficiency and the accuracy of the proposed energy minimization problem, a new auxiliary variable is introduced, which is combined with the level set method. By applying the multiplication operator splitting ( MOS ) numerical algorithm, good results are obtained. Finally, compared to the CV model, our results show that the proposed method hurdles the influence of noises, which is effective for segmenting the noisy images. Less iterations are needed,and our approach is faster than the CV model. Furthemore our model has higher object segmentation accuracy.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.123