检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈战平[1]
机构地区:[1]南京师范大学计算机科学与技术学院,江苏南京210042
出 处:《传感器与微系统》2011年第9期5-8,共4页Transducer and Microsystem Technologies
摘 要:在测量系统中许多传感器动态特性是一个非线性Wiener模型,即存在着严重的静态非线性和动态响应滞后。为了补偿动态误差,采用模型参考和Wiener逆模型辨识的算法建立动态补偿单元。补偿单元由一个静态逆模型和动态逆模型构成。通过静态标定方法,采用单输入/单输出的模糊小脑神经网络(SISO-FCMAC)建立传感器静态非线性模型,再由SISO-FCMAC的逆运算建立静态逆模型。动态逆模型是一个IIR滤波器,其系数通过模型参考的系统辨识方法得到。该补偿算法具有学习简单、收敛速度快、函数逼近精度高等特点。通过实验验证了该算法的有效性。In measurement systems, many sensors' dynamics charaetenstic is a nonlinear Wiener model, and have serious static nonlinear and dynamic response hysteresis. In order to compensate the error, a novel algorithm uses model reference and Wiener inversion model identification, is proposed for compensator modeling. The compensator consists of static inverse model and dynamic inverse model. The static nonlinear model of the sensor is built on a single-input-single-output fuzzy cerebllar model articulation controller (SISO-FCMAC), and the static inverse model is established by inverse operation of SISO-FCMAC. The dynanmic inverse model is a IIR filter, and its coefficient is obtained through the system identification based on model reference. The algorithm has characteristics of simple study, quick convergence and high precision of function approximation, etc. Experiments show that the algorithm is effective.
分 类 号:TP212.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40