基于支持向量机建模的多变量过程系统预测控制  被引量:1

Predictive Control of Multivariable Process System Based on Support Vector Machine Model

在线阅读下载全文

作  者:李争[1] 薛增涛[1] 邓慧琼[1] 

机构地区:[1]河北科技大学电气信息学院,河北石家庄050018

出  处:《哈尔滨理工大学学报》2011年第4期102-107,共6页Journal of Harbin University of Science and Technology

基  金:河北省自然科学基金项目(E2009000703)

摘  要:基于预测控制原理和支持向量机理论,针对工业中多变量过程系统控制的困难性,提出了一种智能预测控制策略.水泥回转窑煅烧工艺作为水泥生产中最重要的环节,包含了复杂的物理和化学反应过程,具有大惯性、纯滞后、非线性和强耦合的特点.考虑到水泥工业中先进过程控制的需要,主控制系统结构包括了三个控制环:压力控制环、烧成带控制环和尾端温度控制环.基于PID和广义预测控制算法分析,广义预测控制的性能指标被转化为PID形式.通过使用基于SVM的非线性回归模型,对实验数据进行了分析.提出的控制算法在两种情况下进行仿真实验获得系统的响应,并与普通PID控制算法进行对比研究.仿真结果表明了所提出方案的有效性,在采用所提出控制算法情况下,与传统PID控制相比,控制变量典型阶跃响应具有更好的响应时间和跟踪性能.Based on the predictive control principle and support vector machine theory,this paper presents an intelligent predictive control scheme to solve the control difficulties of industry process with multi-variables.The rotary kiln calcination is the most important part of cement production including complicated physical and chemical reaction processes with large inertia,pure hysteresis,nonlinearity and strong coupling characteristics.Considering the need of advanced process control in cement industry,the main control system structure includes three control loops as the pressure control loop,the burning zone control loop and the back-end of kiln temperature control loop.Based on the analysis of PID and generalized predictive control algorithm,the performance index of generalized predictive control algorithm is restructured into PID form.By analysis of the experimental data,the nonlinear regression model based on SVM is introduced.The control algorithm using SVM model is simulated in two cases to derive the responses of system compared with the ordinary PID control algorithm.The simulation results of typical step responses of control variables using the presented control scheme show the effectiveness of the control scheme with better response time and tracking performance compared to traditional PID control.

关 键 词:多变量系统 水泥回转窑 SVM 预测控制 控制系统设计 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象