检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《机械传动》2011年第9期62-64,共3页Journal of Mechanical Transmission
摘 要:针对传统方法在齿轮故障诊断中可靠性不高的问题,提出了基于证据理论的混合诊断算法。根据齿轮故障特征向量,采用两个并行的BP神经网络进行局部故障诊断,获得彼此独立的证据。再用证据理论对各证据进行融合,最终实现对齿轮的故障诊断。实例结果表明,该方法可充分利用各种故障的冗余和互补信息,有效地提高诊断的可信度。For the reason of low-reliability exists in the gear fault diagnosis of traditional methods,a method based on evidence theory hybrid diagnosis algorithm is presented.According to the fault feature vectors,two parallel BP neural networks are used to carry on local fault diagnosis to acquire the independent evidences each other.Then evidence theory is employed to fuse evidences,and gear fault diagnosis is fulfilled finally.Example shows that,various faults redundant and complement information can be sufficiently used and the reliability of diagnosis is effectively improved.
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.20