检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西华大学机械工程及自动化学院,四川成都610039
出 处:《机械管理开发》2011年第5期71-72,74,共3页Mechanical Management and Development
摘 要:利用神经网络理论,提出一种利用BP神经网络预测切削表面粗糙度的方法。简单分析了粗糙度的影响因素及预测原理。介绍了BP神经网络的特点、原理、算法和公式。在对Matlab及其神经网络工具箱简要介绍的基础上,采用BP网络的方法对钢Q235材料粗糙度进行了训练、预测和分析。结果表明,该方法的预测误差小于3%。Based on neural network theory,this paper advances the method of forecasting the roughness of cut surface by using BP neural network and presents a simple analysis of the affecting factors and the principles of forecasting roughness.It will introduce the characteristics,principles algorithm and formula of the BP neural network and steel Q235 materials-a case in study.The results show the method can help to achieve the prediction of roughness with an error of less than 3 percent.
关 键 词:BP神经网络 切削振动 MATLAB 表面粗糙度预测
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31