检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学信息科学与技术学院,四川成都610031
出 处:《西南科技大学学报》2011年第3期53-58,共6页Journal of Southwest University of Science and Technology
基 金:高等学校博士学科点专项科研基金(20090184120022);中央高校基本科研业务费专项资金科技创新项目(SWJTU09CX036)
摘 要:针对贝叶斯(Naive Bayes,NB)分类器的集成学习方法,研究如何提高分类器集成中各成员分类器之间的多样性,同时提高分类器系统准确率。实现方法是把训练集的所有属性特征划分特征子集,并处理所划分的属性特征子集,最后为每个成员分类器构造出不同的完整特征属性训练集。研究结果表明采用的NB集成方法(Ensemble ofNaive Bayes,ENB)提高了分类性能,把ENB机器学习方法应用到自动图像标注中也获得了很好的效果。For the Naive Bayes classifier ensemble method, the research concentrates on proposing an ensemble construction method which aims at how to build accurate and diverse classifier. The main, approach consists in randomly splitting the feature set of all training data into subsets and processing the divided subsets, finally, reconstructing a full feature set for each classifier in the ensemble. Experiments show that the method of ENB improves the performance of the classifier. Finally, applying ENB for image automatic annotation also has very good effect.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124