整函数及其差分分担有限集的唯一性  

On the Uniqueness of Shared Set with Finite Complex Numbers of Differences of Entire Functions

在线阅读下载全文

作  者:胡祎[1] 易才凤[2] 徐洪焱[1] 

机构地区:[1]景德镇陶瓷学院信息工程学院,江西景德镇333403 [2]江西师范大学数信学院,江西南昌330022

出  处:《数学的实践与认识》2011年第19期192-198,共7页Mathematics in Practice and Theory

基  金:国家自然科学基金(10871108);江西省自然科学基金(2010GQS0119));江西省教育厅青年科学研究项目(GJJ10223);景德镇陶瓷学院科研资助项目

摘  要:研究了整函数及其差分多项式分担有限复数集的唯一性,得到了如下结果:设S_m={1,ω,…,ω^(m-1)},其中ω=cos(2π/m)+i sin(2π/m),c为非零有限复数,n(>5),m(≥2)均为正整数.如果f(z),g(z)为有限级整函数,满足E(S_m,f(z)~n(f(z)-1)f(z+c))=E(S_m,g(z)~n(g(z)-1))g(z+c)),那么f(z)≡g(z).In this paper, we study the uniqueness problems of sharing sets of difference polynomials of entire functions and obtain the following result. Let n(〉5),m(≥2) be two positive integers,c∈C-{0},and Sm={1,w,…,w^m-1},where w=cos(2π/m)+i sin(2π/m).If two nonconstant entire functions f(z), g(z) satisfy E(Sm,f(z)^nf(z)-1f(z+c))=E(Sm,g(z)^n(g(z-1))g(z+c)),then f(z)≡g(z)

关 键 词:整函数 唯一性 分担集 差分 

分 类 号:O174.52[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象