检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程大学自动控制工程系,陕西西安710025
出 处:《航空学报》2011年第10期1879-1887,共9页Acta Aeronautica et Astronautica Sinica
基 金:国家自然科学基金(60874093)~~
摘 要:为解决折叠翼飞行器在发射段各项特性变化较大、对飞行控制律鲁棒性要求较高的问题,设计了一种以块控反步法为基础的自适应鲁棒非线性控制器。在发射段动态模型基础上,该控制器采用径向基函数(RBF)神经网络自适应逼近飞行器特性变化时的系统未知不确定性和干扰,通过在虚拟控制律中引入动态面控制技术避免多重微分运算,克服了传统反步法所带来的"项数膨胀"问题。利用Lyapunov稳定性定理证明了闭环系统有界且跟踪误差指数收敛于零的一个小邻域。在考虑未知不确定性的情况下,对某型折叠翼飞行器进行的6自由度(DOF)飞行仿真结果验证了所设计控制器的有效性和鲁棒性。The characteristics of a folding-wing aerial vehicle undergo fairly great changes during its launching time.To fulfill the high robustness requirements of a flight control system,an adaptive robust nonlinear flight controller based on block backstepping is designed.A variable dynamic model is established,and the unknown uncertainty and disturbance caused by aerodynamic characteristic changes are adaptively approximated by radial basis function(RBF) neural networks.Dynamic surface control is employed to replace the differentiations of the virtual control law in traditional backstepping to overcome the problem of "term explosion".The closed-loop system is guaranteed to be bounded and the tracking errors are also proved to converge exponentially to a small neighborhood around zero by the Lyapunov approach.Furthermore,the effectiveness and robustness of the designed flight controller are verified by six degree-of-freedom(DOF) nonlinear flight simulations for the folding-wing aerial vehicle with unknown uncertainty.
关 键 词:折叠翼飞行器 飞行控制 反步法 RBF神经网络 动态面 未知不确定性
分 类 号:V249.12[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.255.53