检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李国[1] 张智斌[1] 刘芳先[2] 姜波[1] 姚文伟[1]
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500 [2]广州城建职业学院信息工程系,广州510925
出 处:《计算机应用》2011年第11期3063-3067,共5页journal of Computer Applications
摘 要:协同过滤是目前最流行的个性化推荐技术,但现有算法局限于用户项目评分矩阵,存在稀疏性、冷开始问题,邻居相似性只考虑用户共同评分项目,忽略项目属性、用户特征相关性;同等对待用户不同时间的兴趣偏好,缺乏实时性。针对这些问题,提出一种非线性组合的协同过滤算法,改进基于项目属性、用户特征的邻居相似性计算方法,获得更加准确的最近邻居集;初始预测评分填充矩阵,以增强其稠密性;最终预测评分增加时间权限,使用户最新兴趣权重最大。实验表明,该算法通过有效降低稀疏性、冷开始和实现实时推荐,提高了预测精度。Collaborative filtering is the most popular personalized recommendation technology at present.However,the existing algorithms are limited to the user-item rating matrix,which suffers from sparsity and cold-start problems.Neighbours' similarity only considers the items which users evaluate together,but ignores the correlation of item attribute and user characteristic.In addition,the traditional ones have taken users' interests in different time into equal consideration.As a result,they lack real-time nature.Concerning the above problems,this paper proposed a nonlinear combinatorial collaborative filtering algorithm consequently.In order to obtain more accurate nearest neighbour sets,it improved neighbours' similarity calculated approach based on item attribute and user characteristic respectively.Furthermore,the initial prediction rating fills in the rating matrix,so makes it much denser.Lastly,it added time weight to the final prediction rating,so then let users' latest interests take the biggest weight.The experimental results show that the optimized algorithm can increase prediction precision,by way of reducing sparsity and cold-start problems,and realizing real-time recommendation effectively.
关 键 词:个性化推荐 协同过滤 用户特征 项目属性 时间权限
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] TP391.3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3