检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学信息科学与工程学院,秦皇岛066004
出 处:《中国生物医学工程学报》2011年第5期666-672,共7页Chinese Journal of Biomedical Engineering
基 金:国家自然科学基金(60504035;61074195);河北自然科学基金(F2010001281;A2010001124)
摘 要:研究半监督学习方法在EEG分类中的应用。结合标签均值和自训练思想提出两种新的半监督支持向量机方法。首先通过未标记样本的预测值估计标签均值,然后对未标记样本的标签进行优化。在此基础上提出了两种半监督支持向量机方法,一种是基于多核学习的标签均值自训练半监督支持向量机(Means4vm_mkl);一种是基于迭代优化的标签均值自训练半监督支持向量机(Means4vm_iter)。对BCI Competition Dataset中的3组数据进行仿真实验,讨论分类正确率和运算效率两个指标。结果表明,两种方法均有较高的分类正确率,尤其在BCIⅠ数据集中,Means4vm_mkl方法达到了竞赛第一名的水平96%;而且运算效率较高,最快的只需29.5 s,为在线BCI系统的设计奠定了基础。In this paper the application of semi-supervised learning algorithms to brain-computer interface(BCI) was investigated.Two versions of semi-supervised support vector machines were proposed with integration of label mean and self-training.Firstly,the predictive values of unlabeled data were used to estimate label means,then the labels of unlabeled data were optimized by maximizing the margin between the label means.Based on these,two versions of the mean S3VM were proposed.One version is based on multiple kernel learning(Means4vm_mkl),the other one is based on alternating optimization(Means4vm_iter).We applied these two methods to the three groups datasets of BCI Competition Dataset.Experiments showed that both of the proposed algorithms achieved highly performances,especially on BCIⅠdataset.The classification rate of Means4vm_mkl on BCIⅠdataset was 96%,the same as the topping one during the Competition.In addition,both of the proposed algorithms had high running speed with the shortest performance time of 29.5 s,laying a foundation for the online BCI system.
关 键 词:脑电图 半监督学习 支持向量机 标签均值 脑-机接口
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117