利用模型选择确定视觉词袋模型中词汇数目  被引量:3

Determine word number of Visual Bag-of-Words model by model selection method

在线阅读下载全文

作  者:许明[1] 韩军伟[1] 郭雷[1] 尹文杰[1] 

机构地区:[1]西北工业大学自动化学院,西安710129

出  处:《计算机工程与应用》2011年第31期148-150,共3页Computer Engineering and Applications

基  金:国家自然科学基金(No.61005018);西北工业大学引进高层次人才科研启动费资助项目~~

摘  要:视觉词袋(Visual Bag-of-Words)模型在图像分类、检索和识别等计算机视觉领域有了广泛的应用,但是视觉词袋模型中词汇数目往往是根据经验确定或者采用有监督的交叉学习选取。提出一种确定视觉词袋模型中词汇数目的无监督方法,利用模型选择的思想来解决问题。使用高斯混合模型描述具有不同词汇数目的视觉词袋,计算各模型贝叶斯信息准则的值,选取贝叶斯信息准则最小值对应的词汇数目。与交叉验证的监督学习在图像分类实验的对比结果说明该方法准确有效。Visual Bag-of-Words model has been widely used in image classification,retrieval and recognition.However,its word number usually is selected by user experience or determined using the supervised cross-validation scheme.In this paper,an unsupervised method is proposed to infer the word number of Visual Bag-of-Words model(BoW) based on the idea of model selection.Firstly,Gaussian Mixture Models(GMM) are built accounting for BoWs with different word number.Afterwards,Bayesian Information Criterion(BIC) is adopted to select the best model that has the minimum BIC value.Compared with cross-validation approach using image classification,the result demonstrates the effectiveness of the proposed approach.

关 键 词:视觉词袋模型 模型选择 高斯混合模型 贝叶斯信息准则 

分 类 号:TP37[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象