应用数值积分法计算电力系统混沌阈值  

Computtion of Chaotic Threshhold in Power System by Numerical Integral Method

在线阅读下载全文

作  者:张强[1] 黄宵宁[1] 

机构地区:[1]南京工程学院电力工程学院,南京211167

出  处:《电力系统及其自动化学报》2011年第5期35-38,58,共5页Proceedings of the CSU-EPSA

基  金:江苏省高校自然科学基金资助项目(09KJB470002)

摘  要:Melnikov函数是分析同(异)宿轨道出现混沌的最有效方法,用该函数的数值积分法计算单机无穷大电力系统在周期性负荷扰动下的混沌阈值。通过相应无扰系统的Hamilton函数求得时间与功角的关系式,使Melnikov函数由对时间的积分变成对功角的积分形式,再用复化Simpson公式求得阈值。该方法避免了求解无扰系统的同宿轨道参数解析式,并且,无需将系统输入的机械功率设定为小量。虽然不能得到Melnikov函数的解析式,但阈值曲线显示出了可能产生的混沌区域。Melnikov function is the most effective method for homoclinic (heteroclinic) orbits,and a numerical method of the function is applied to compute the chaotic threshold in a single machine infinite bus system disturbed by a periodical load. The relationship between time and power angle is formulated based on the Hamilton function of the undisturbed system and an integral of time variable is changed into one of power angle in the function. Finally, the threshold is reached by the compound Simpson rule. The presented method can avoid the parametric formulation of homoclinic orbit of an undisturbed system, and doesn't need set the mechanical input of the system to be a small quantity. Although the analytical Melnikov function cannot be obtained, a possible chaotic area is shown by a chaotic threshold curve.

关 键 词:电力系统 混沌阈值 同宿轨道 数值积分法 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象