二阶模糊随机过程均方Henstock-Stieltjes积分的收敛定理  被引量:2

Convergence Theorems of Mean-Square Henstock-Stieltjes Integrals for Second Order Fuzzy Stochastic Process

在线阅读下载全文

作  者:任爱红[1] 

机构地区:[1]宝鸡文理学院数学系,陕西宝鸡721013

出  处:《西南师范大学学报(自然科学版)》2011年第5期62-66,共5页Journal of Southwest China Normal University(Natural Science Edition)

基  金:陕西省教育厅科研计划项目(11JK0506)

摘  要:利用二阶模糊随机过程均方Henstock-Stieltjes积分的定义和性质,讨论了两类二阶模糊随机过程均方Henstock-Stieltjes积分的收敛定理,即二阶模糊随机过程序列关于增实函数收敛定理(ρ)lim n→∞ integral from n=a to b(Xn(t)dg(t))=integral from n=a to b(X(t)dg(t))和均方连续二阶模糊随机过程关于实值单调非减函数列收敛定理(ρ)lim n→∞ integral from n=a to b(X(t)dg(t))=integral from n=a to b(X(t)dg(t)).In this paper,using definition and properties of mean-square Henstock-Stieltjes integrals for second order fuzzy stochastic process,two convergence theorems of Henstock-Stieltjes are discussed.The two following convergence theorems have been gotten.One is the convergence theorem of a second order fuzzy stochastic process sequence about increasing real function(ρ)lim n→∞ integral from n=a to b(Xn(t)dg(t))= integral from n=a to b(X(t)dg(t)),the other is convergence theorem of mean-square continuous second order fuzzy stochastic process about a non-decreasing real function sequence(ρ)limn→∞ integral from n=a to b(X(t)dg(t))= integral from n=a to b(X(t)dg(t)).These results play important roles in further studying integrability and of differentiability of fuzzy stochastic process.

关 键 词:模糊随机过程 均方连续 均方Henstock-Stieltjes积分 

分 类 号:O159[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象