用弱内导算子确定闭包系统  

Determination a closure system by a weak interior derived operator

在线阅读下载全文

作  者:高小燕[1] 

机构地区:[1]榆林学院数学与应用数学系,陕西榆林719000

出  处:《纺织高校基础科学学报》2011年第3期338-341,共4页Basic Sciences Journal of Textile Universities

基  金:陕西省教育厅科技计划项目(09JK834)

摘  要:引入了弱内导算子概念,证明了对于每个给定的集合X,可以给WE(X)(即X上的弱内导算子的全体)上赋予适当的序关系≤使得(WE(X),≤)与(CS(X),■)完备格同构.这里CS(X)是X上的闭包系统的全体.从而它们之间也是范畴同构的,因此可以用弱内导算子完全确定闭包系统.最后讨论了弱内导算子的范畴性质.The notion of weak interior derived operator is introduced in this paper.It is proved that,for a given set X,an order relation ≤ can be defined on WE(X)(the set of all weak interior derived operators on X) such that(WE(X),≤) is a complete lattice which is isomorphic to(CS(X),■)(the set of all closure systems on X).An isomorphism also can be established between corresponding categories. Therefore,any closure system can be determined by a weak interior derived operator.Finally the properties of category of weak interior derived spaces are studied.

关 键 词:弱内导算子 闭包系统 完备格同构 余反射子范畴 

分 类 号:O189.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象