BP人工神经网络模型在太湖水污染指标预测中的应用  被引量:15

Application of BP neural network model for prediction of water pollutants concentration in Taihu Lake

在线阅读下载全文

作  者:郭庆春[1,2,3] 何振芳[3,4] 李力[2] 李海宁[1] 

机构地区:[1]陕西广播电视大学教务处,西安710068 [2]中国科学院地球环境研究所中国科学院黄土与第四纪地质国家重点实验室,西安710075 [3]中国科学院研究生院,北京100049 [4]中国科学院寒区旱区环境与工程研究所,兰州730000

出  处:《南方农业学报》2011年第10期1303-1306,共4页Journal of Southern Agriculture

基  金:国家重点基础研究发展计划(973)项目(2004CB720208)

摘  要:【目的】利用BP人工神经网络模型预测太湖水污染指标,为探讨湖泊水污染物变化规律提供参考。【方法】利用2004~2010年浙江嘉兴王江泾断面自动监测站4项水质指标,建立了太湖水污染BP人工神经网络模型,并对太湖2012年前5周的水质情况进行预测。【结果】建立了浙江嘉兴王江泾断面的4项水质指标浓度的三层BP神经网络预测模型,其预测精度较高,对湖泊水环境污染物预测的适应性较好;对太湖2012年前5周的水质情况进行预测,结果表明,2012年前5周水质污染情况加重,基本为Ⅴ类水质,符合太湖水质污染情况发展态势。【结论】BP人工神经网络具有很强的非线性映射能力和柔性的网络结构,与传统的统计建模方法相比,其预测精度较高,能较好地反映水质指标的内在变化规律,为控制水环境污染提供了科学预测方法。[Objective]The present study was conducted to predict water pollutant concentrations in Taihu Lake using BP neural network model in order to find out the mechanism of changes in water pollutant concentrations in lakes.[Method]The BP neural network forecast method for predicting water pollutant concentration in Taihu Lake was established on the basis of 4 water quality indices,viz.,pH value,dissolved oxygen,CODMn and NH3-N from 2004-2010.The data were obtained from section automatic monitoring station of Wang River(Jiaxing,Zhejiang) .The water quality of Wang River during first 5 weeks of 2012 was predicted by using the established model.[Result]In order to simplify the structure of BP neural network model and improve the prediction speed,the study established a three-layer BP neural network model.The predicted results were found accurate and the model was found to efficiently predict the changes in water pollutant concentration in lakes.The predicted results of water quality of Wang River during first 5 weeks of 2012 showed that the water quality of Wang River belonged to Ⅴ grade and became worse.The prediction results were in accordance with the development trend of water pollutants in Taihu Lake.[Conclusion]BP neural network model had good nonlinear mapping capability and flexible network structure.It could better reflect the changes patterns of water quality index with high prediction precision and provide a scientific prediction mechanism for controlling water pollution.

关 键 词:BP人工神经网络模型 水污染物 预测 太湖 

分 类 号:X524[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象