检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘霁[1] 周亚东[1] 高峰[1] 赵俊舟[1] 薛峰[1]
机构地区:[1]西安交通大学智能网络与网络安全教育部重点实验室机械制造系统工程国家重点实验室,西安710049
出 处:《深圳信息职业技术学院学报》2011年第3期33-37,共5页Journal of Shenzhen Institute of Information Technology
基 金:国家自然科学基金资助项目(60921003;60802056;60905018);国家"863计划"资助项目(2007AA01Z480);国家科技支撑计划资助项目(2011BAK08B02)
摘 要:网络已成为当今世界重要的信息载体,但是网络信息良莠不齐,对人们的生活造成了很多负面影响,因此,如何正确识别网络中的敏感话题,是当前网络舆情分析与监管的重要任务之一。本文以识别网络论坛中的敏感话题为目标,基于网络论坛文本在结构和表达上表现出的篇幅短、结构不完整、文字口语化等特性,将该类文本表示成基于向量空间模型的文本矩阵,并根据网络敏感话题具有先验知识和态度倾向性等特点,提出了基于倾向性词典的特征提取方法,可有效提高网络敏感话题识别的正确率,最后通过实验验证了这一改进的有效性,证实了本文的研究价值。Internet has become an important platform for information spreading, but not all of the information on the Internet is useful to people's daily life. Therefore, how to correctly detect sensitive topics on the Internet is one of the most important tasks for network public opinion supervision. This paper aims to detect sensitive topics in online communities on the basis of the features of Internet texts, such as short length, incomplete structure and colloquialism, using the vector space model to represent the texts. We propose a new feature extraction method based on the sentiment lexicon to improve Internet sensitive topic detection accuracy. Finally, the effectiveness of our method is discussed based on data from experiments.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249