Bézier曲线曲面的同次扩展  被引量:3

Extension of Bézier curves and surfaces of the same degree

在线阅读下载全文

作  者:刘植[1] 陈晓彦[1] 张莉[1] 时军[1] 

机构地区:[1]合肥工业大学数学学院,合肥230009

出  处:《中国科技论文在线》2011年第10期721-725,共5页

基  金:中央高校基本科研业务费专项基金资助项目(2011HGXJ1076);高等学校博士学科点专项科研基金资助项目(20100111120023);安徽省自然科学基金资助项目(11040606Q42);合肥工业大学博士专项科研基金资助项目(2010HGBZ0563)

摘  要:在几何造型中,为了更加灵活地调控曲线曲面的形状,定义了一类带多形状参数的多项式基函数。同次Bernstein基函数是该基函数的特例,且二者具有类似的几何性质。利用该基函数构造了带形状参数的多项式参数曲线曲面,它们分别具有同次Bézier曲线曲面的形状特点。通过改变形状参数的取值可以整体或局部调控曲线曲面的形状。数值实例表明新方法在计算机辅助几何设计中是灵活有效的。A class of Polynomial basis functions with multiple shape parameters is defined in order to adjust the shape ofcurves and surfaces more flexibly. Bemstein basis functions are special cases of them and they share the same properties. The basis functions are used to constructed polynomial curves and surfaces with shape parameters. Moreover, we studied that it is very convenient to adjust locally or entirely the shape of curves and surfaces by modifying the values of shape parameters. Some examples given in this paper show our method is effective in geometric modeling.

关 键 词:基函数 形状参数 BÉZIER曲线曲面 几何造型 

分 类 号:TP391.7[自动化与计算机技术—计算机应用技术] O186.11[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象