检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院光电技术研究所,成都610209 [2]中国科学院研究生院,北京100049
出 处:《光电工程》2011年第11期146-150,共5页Opto-Electronic Engineering
摘 要:泽尼克圆多项式在圆形光瞳的正交性和能够代表经典像差而被广泛应用到波前分析中,用泽尼克圆多项式作为矩形光瞳基底函数,通过推导得到在矩形光瞳上正交的多项式。这个在矩形光瞳上正交的多项式不仅是唯一的,而且也能够表示经典像差,就像泽尼克圆多项式在表示圆形光瞳时具有这样的特性一样。矩形光瞳上正交多项式像泽尼克圆多项式一样即可以用极坐标表示也可以用直角坐标表示。使用正交多项式前15项在MATLAB中用最小二乘法拟合窗口干涉数据,从拟合残差的RMS统计分析的结果来看,能很好描述高质量熔石英材料在窗口方向上的折射率均匀性分布。Zernike circle polynomials are in widespread use for wavefront analysis because of their orthogonality over a circular pupil and their representation of balanced classical aberrations. Using the circle polynomials as the basis functions for their orthogonalization over rectangle pupil, we derive closed-form polynomials that are orthonormal over it. The polynomials are unique in that they are not only orthogonal across rectangle pupils, but also represent balanced classical aberrations, just as the Zernike circle polynomials are unique in these respects for circular pupils. The polynomials may be given in terms of the circle polynomials as well as in polar or Cartesian coordinates. Using the first 15 items of the rectangle polynomials to fit the data of interferometer of rectangle windows in the least squares method, we can get the conclusion that the first 15 items of the rectangle polynomials can be fit the data very well from the result of statistical analysis.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3