求解双边加权模糊支持向量机的序贯最小优化算法  

Sequential minimal optimization algorithm for bilateral-weighted fuzzy support vector machine

在线阅读下载全文

作  者:李艳[1] 杨晓伟[1] 

机构地区:[1]华南理工大学理学院,广州510641

出  处:《计算机应用》2011年第12期3297-3301,3317,共6页journal of Computer Applications

基  金:国家自然科学基金资助项目(61070033);广东省自然科学基金重点资助项目(92510090001000005)

摘  要:高的计算复杂度限制了双边加权模糊支持向量机在实际分类问题中的应用。为了降低计算复杂度,提出了应用序贯最小优化算法(SMO)解该模型,该模型首先将整个二次规划问题分解成一系列规模为2的二次规划子问题,然后求解这些二次规划子问题。为了测试SMO算法的性能,在三个真实数据集和两个人工数据集上进行了数值实验。结果表明:与传统的内点算法相比,在不损失测试精度的情况下,SMO算法明显地降低了模型的计算复杂度,使其在实际中的应用成为可能。High computational complexity limits the applications of the Bilateral-Weighted Fuzzy Support Vector Machine(BW-FSVM) model in practical classification problems.In this paper,the Sequential Minimal Optimization(SMO) algorithm,which firstly decomposed the overall Quadratic Program(QP) problem into the smallest possible QP sub-problems and then solved these QP sub-problems analytically,was proposed to reduce the computational complexity of the BW-FSVM model.A set of experiments were conducted on three real world benchmarking datasets and two artificial datasets to test the performance of the SMO algorithm.The results indicate that compared with the traditional interior point algorithm,the SMO algorithm can reduce significantly the computational complexity of the BW-FSVM model without influencing the testing accuracy,and makes it possible for the BW-FSVM model to be applied to practical classification problems with outliers or noises.

关 键 词:序贯最小优化 双边加权模糊支持向量机 支持向量机 模糊支持向量机 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象