检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阎德劲[1]
机构地区:[1]中国西南电子技术研究所,四川成都610036
出 处:《电子元件与材料》2011年第12期61-64,共4页Electronic Components And Materials
摘 要:针对毫米波电路引线楔形焊接工艺优化难题,提出将一种带惩罚函数项的改进BP(Back Propagation,反向传播)神经网络算法用于引线楔形焊接质量智能预测中。通过试验分析了影响楔形焊接质量的关键工艺参数,提取了楔形焊接质量评价指标,基于改进的BP神经网络,建立了引线楔焊质量智能预测模型。研究结果表明,所提出的改进BP神经网络算法合理,且能有效预测工艺参数对引线楔焊质量的影响规律。Aiming at the process optimization problem of wire wedge bonding for millimeter wave IC, a improved BP (Back propagation) neural network algorithm with penalty function used in the intelligent prediction of wire wedge bonding quality was presented. The key process parameters influencing on the wedge bonding quality were analyzed by experimentation, the evaluation index of quality for wire wedge bonding was established. Based on the improved BP neural network, the intelligent predictable model of wire wedge bonding quality was established. The research results show that the improved BP neural network algorithm is rational, and it can effectively predict the influence disciplinarian of process parameters on wedge bonding quality.
分 类 号:TN183[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.239.148