检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王克[1]
机构地区:[1]东北师范大学
出 处:《应用数学学报》1990年第4期401-408,共8页Acta Mathematicae Applicatae Sinica
基 金:国家自然科学基金
摘 要:Poincare-Bendixson环域定理是平面动力系统最基本的结论之一,在应用上也极为重要.文献[3]指出,它基本上是由解的存在唯一性和Jordan定理这个简单的几何事实推得的.本文证明,当一个平面微分系统的解不满足唯一性时,Poincare-Bendixson环域定理的结论仍然成立.推广后的环域定理在应用上是方便的.在本文后半部分,我们考虑了Lienard方程的极限环的存在性问题,所得定理推广了著名的定理。The Poincare-Bendixson's annular region theorem is one of the most fundamental resultsin a planar dynamical system, and is also very important in application. But the uniqueness ofsolutions to the system is needed. In this paper we prove that the conclusion of Poincare-Bendi-xson theorem is still valid for a planar differential system without considering the uniqueness ofsolutions. Our theorem is convenient for application. Using our theorem, we consider the exis-tence of limit cycles of Lienard's equation. The well-known Filippov's theorem is generalized.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15