检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓宗全[1,2] 田大可[1,2] 刘荣强[1,2] 郭宏伟[1,2]
机构地区:[1]哈尔滨工业大学机器人技术与系统国家重点实验室,哈尔滨150001 [2]哈尔滨工业大学机电工程学院,哈尔滨150001
出 处:《哈尔滨工业大学学报》2011年第11期39-43,共5页Journal of Harbin Institute of Technology
基 金:国家自然科学基金资助项目(50935002;11002039);高等学校学科创新引智计划资助项目(B07018);机器人技术与系统国家重点实验室(哈尔滨工业大学)自主研究课题(SKLRS200802C)
摘 要:为了得到构架式空间可展开天线结构优化中目标函数与设计变量的解析表达式,基于BP神经网络建立一种天线结构优化参数的预测模型.根据天线背架的结构及神经网络的训练原理,构建对优化参数进行预测的网络模型;应用有限元软件ANSYS对优化参数进行数值计算,通过正交试验设计,得到BP神经网络的训练样本;调整传递函数、隐层节点数及训练算法,建立满足误差要求的优化参数的预测模型,利用检验样本对预测模型进行泛化能力检验.结果表明:网络预测值与有限元计算结果吻合较好,整体预测误差≤10%;并且模型运行时间短,仅需0.13 s.该模型能够较准确地预测结构的优化参数,为结构的优化设计提供了理论参考.In order to obtain the analytical expression between objective functions and design variables for space deployable truss antenna during the structure optimization, prediction model of optimal parameters was built based on BP neural network. According to the truss structure and training principle of neural network, network model was established. Optimal parameters were calculated by using the finite element software AN- SYS, and the training samples were obtained by orthogonal design. Adjusting the transfer function, the num- ber of hidden nodes and training algorithm, prediction model was constructed, which satisfied the error requirement. Generalization capacity of neural network was tested by means of testing samples. The results show that predictive values of neural network agree well with finite element calculation results, which the relative error is within 10%. Moreover, the run time of model is shorter than that of ANSYS, which only needs 0. 13 s. This model can predict optimal parameters more accurately and provide a theoretical reference for the structure optimization.
关 键 词:可展开天线 背架 BP神经网络 预测模型 正交试验设计
分 类 号:V443.4[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145