检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学计算机科学与技术学院,徐州221116 [2]中国科学院计算技术研究所智能信息处理重点实验室,北京100080
出 处:《计算机科学》2011年第12期236-238,268,共4页Computer Science
基 金:国家自然科学基金项目(60975039);江苏省自然科学基金项目(BK2009093)资助
摘 要:传统的粗逻辑神经网络可以对信息系统及粗推理决策进行研究,能够深入地揭示粗糙集理论实质,但对于处理非单值输入问题不能取得良好的效果。粗糙神经元的上边界和下边界恰好能解决这一方面的问题,且随着粗集理论的不断发展,上下边界的概念得到了广泛的应用。综合两个方面的优点,提出了一种粗逻辑神经网络的构造与学习方法。它主要由传统粗逻辑神经网络和粗糙神经元的思想(模式中每一个特征变量都包含上界和下界两个边界)构成:边界粗逻辑神经网络。首先给出了粗糙神经元和粗逻辑及决策的基本知识,然后提出了边界粗逻辑神经网络的结构和学习方法及两种模型并比较了模型间的优缺点。与传统粗逻辑神经网络相比,这类神经网络能更有效地处理非单值和连续近似域函数问题。最后提出可以进一步优化的方向。The traditional rough logic neural network can do research in information systems and decision-making and reveal the substance of rough set theory, but cannot get good results when dealing with the problem of non-single-value input. The rough neuron with upper and lower boundary can deal with the above problem, and with the development of rough set,the concept of upper and lower boundaries has been widely used. Comprehening the above advantages, this paper propounded the construction and studying of a kind of rough logic neural network. It is made up of rough logic neural network and rough neurons(each variable in this pattern has both upper and lower bounds), which is called boundary rough logic neural network. First the paper gave the basic knowledge about rough neuron, rough logic and de- cision-making, and then propounded the structure of boundary rough logic neural network and learning methods, then gave the two models about it and compared the advantages and disadvantages between then~ It indicated that this type of neural network, compared with traditional rough logic neural network, can be more efficiency when dealing with the problem non-single-valued and continuous approximation function. At last it proposed the optimized direction.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30