基于图知识迁移的蚁群算法参数选择  被引量:3

Parameters selection for ant colony algorithms based on graph knowledge transfer

在线阅读下载全文

作  者:王雪松[1] 潘杰[1] 程玉虎[1] 

机构地区:[1]中国矿业大学信息与电气工程学院,江苏徐州221116

出  处:《控制与决策》2011年第12期1855-1860,共6页Control and Decision

基  金:国家自然科学基金项目(60804022;60974050;61072094);教育部新世纪优秀人才支持计划项目(NCET-08-0836);霍英东教育基金会青年教师基金项目(121066);江苏省自然科学基会项目(BK2008126)

摘  要:同时考虑蚁群算法的所有运行参数,提出一种基于图知识迁移的蚁群算法参数选择方法.首先,将包含知识(蚁群算法的运行参数)的源任务映射到一个高维的迁移空间,并通过迁移权值连接不同的源任务,构造一个模型迁移图;然后,扩展模型迁移图使其包含目标任务,并利用图论的知识学习迁移函数;最后,通过最小二乘法自主地给目标任务分配一个优化的运行参数组合.机器人路径规划问题的仿真结果验证了该方法的智能性、快速性与合理性.A kind of parameters selection for ant colony algorithms(ACAs) based on graph knowledge transfer is proposed, where all of running parameters are taken into account simultaneously. Firstly, all source tasks containing knowledge (running parameters for ACAs) are mapped onto a high-dimensional transfer space, and transfer weights are used to connect these source tasks. In this way, a model transfer graph is thus constructed. Then, the model transfer graph is extended to include a target task and a transfer function can be obtained according to a graph theory. Finally, a group of optimal parameters for the.. target task can be automatically determined by using a least-squares method. Simulation results involving a robot path planning problem show the intelligence, rapidness and reasonability of the proposed method.

关 键 词:蚁群算法 参数选择 图知识迁移 路径规划 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象