检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学自动化学院,陕西西安710072
出 处:《西北工业大学学报》2011年第6期839-843,共5页Journal of Northwestern Polytechnical University
基 金:国家自然科学基金(61174193)资助
摘 要:提出用新兴的随机加权估计算法对动力学模型系统误差进行估计,以控制动态模型噪声异常对状态参数估值的影响。该算法根据实际需要对动力学模型误差和状态预报值向量的协方差阵进行随机加权,以控制残差向量协方差阵和新息向量协方差阵的大小,削弱模型误差对状态参数向量的影响,提高动态导航解算的滤波精度。仿真结果表明,提出的随机加权估计算法的估计精度,明显优于经典Kalman滤波和抗差自适应Kalman滤波,能提高飞行器动态导航定位的精度。The introduction of the full paper reviews a number of relevant papers in the open literature, points out s what we believe to be their shortcomings, and then proposes a new method mentioned in the title, which we believe is more efficient than previous ones and which is explained in sections 1,2, and 3. Their core consists of: "Theo- ries of random weighting estimation are established to estimate the kinematic model error and covariance matrices of predicted state vector for controlling the disturbances on state parameter estimation due to the kinematic model noise. This method incorporates random weights into the kinematic model error and the covariance matrix of predic- ted state vector to control the magnitudes of the covariance matrices of residual vectors and predicted residual vec- tors for weakening the disturbance of the kinematic model error on the state parameter estimation, thus improving the filtering accuracy for dynamic positioning and navigation. " Simulation results, presented in Figs. 1,2, and 3, and Table 1, and their analysis demonstrate preliminarily that, compared with existing methods, the proposed meth- od can suppress indeed more efficiently the disturbances due to the kinematic model noise, thus significantly impro- ving the positioning accuracy for dynamic navigation.
分 类 号:V249.3[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.254.100