检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王颖静[1] 王正群[1] 张国庆[1] 俞振洲[1]
出 处:《计算机工程》2011年第24期193-194,197,共3页Computer Engineering
基 金:国家自然科学基金资助项目(60875004);江苏省自然科学基金资助项目(BK2009184);江苏省高校自然科学基金资助项目(10KJB510027;07KJB520133)
摘 要:结合以成对约束形式给出的监督信息和无监督信息,提出一种基于成对约束和稀疏保留的数据降维算法。通过成对约束信息进行鉴别分析,利用稀疏表示方法保留数据集在变换空间中的全局稀疏结构。实验结果表明,与传统特征抽取算法相比,该算法的识别效果更好,需要调节的参数更少,且鲁棒性较高。This paper presents a dimensionality reduction algorithm based on pair-wise constraints and sparsity preserving. It combines some supervised information in the form of pair-wise constraints and large number of unsupervised information. It uses pair-wise constraints to discriminant analysis and uses sparse representation to preserve the sparse reconstructive structure in the transformed space. Compared with the traditional feature extraction method, this algorithm has a better recognition impact, lower parameters, and better robustness.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.164.81