检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东工业大学自动化学院,广州510090 [2]中山大学附属第一医院,广州510080
出 处:《中国图象图形学报》2012年第1期82-89,共8页Journal of Image and Graphics
基 金:广东省科技计划项目(2010A030500006)
摘 要:提出一种采用多方向梯度及其二阶梯度描述神经切片图像的纹理特征,进而识别神经功能束类型的方法。首先,在神经切片图像随机选择一些像素,获得这些像素在邻域范围内4个方向上的梯度和二阶梯度的变化曲线;其次,提取这些曲线的周期和幅值作为描述这些随机选择像素邻域的特征;再次,采用粗糙K均值算法对这些随机选择像素进行聚类处理,从而把功能束区分为不同的类型;最后,分析了在此过程中两个参数对功能束类型区分结果的影响。实验结果表明,所提出的纹理特征描述方法可以准确区分神经切片图像中不同类型的功能束,所提出的识别算法不仅能有效识别神经功能束的类型,而且识别结果与所需设置的参数无关,因此,具有比较强的适应性。An approach to recognize types of fascicular groups from nerve slice image by the gray level multi-direction gradient and its 2nd derivative gradient is proposed in this paper. First, some pixels are selected arbitrarily from a slice image and the gray level multi-direction gradient and the 2nd derivative gradient of their neighborhood areas are calculated. Then the frequency and amplitude of the multi-direction gradient and 2nd derivative gradient curves are extracted as the texture features of the arbitrarily selected pixels neighborhood. Second, the algorithm for recognizing the typos of fascicular groups in nerve slice image is proposed based on the improved rough K-means clustering. The parameters influencing the recognition results are analyzed. The experimental results show that the approach can not only classify the types of fascicular groups accurately but the recognizing results are unrelated with the parameters, which reflect its good adaptivity.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30