用建立微分方程的方法求解连续年金  

Solving Continuous Annuity by Establishing Differential Equation

在线阅读下载全文

作  者:张焕玮[1] 

机构地区:[1]大连职业技术学院,辽宁大连116035

出  处:《科技和产业》2011年第12期82-83,共2页Science Technology and Industry

摘  要:微分方程能准确清晰地表达变量和它的某些阶的导数(或微分)之间的关系,可由此作为起点求得变量之间的函数关系。积累值的变化是由连续付款和利息两个独立因素作用叠加的结果,因此可建立非齐次线性微分方程,求得的变量之间的函数关系。如此与常规方法得出的结论相同,并可得出常规方法中隐含的假设条件。The differential equations can accurately and clearly express the relationship between variables and some of variable-order derivatives(or differential),which as the starting point can get the function relation between variables.The two independent and superimposed factors of continuous payments and interest result in the change of accumulated value,thus non-homogeneous linear differential equations can be set up to obtain the function relationship between the variables.In this way,we can have the same conclusion with conventional methods,and we can also obtain the implicit assumptions in those conventional methods.

关 键 词:微分方程 连续年金 投资 

分 类 号:F224[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象