一种自适应权值的PCA算法  被引量:14

Adaptively weighted PCA algorithm

在线阅读下载全文

作  者:杨开睿[1] 孟凡荣[1] 梁志贞[1] 

机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116

出  处:《计算机工程与应用》2012年第3期189-191,共3页Computer Engineering and Applications

基  金:国家自然科学基金(No.50674086;61003169)

摘  要:针对传统PCA方法对离群点鲁棒性差的问题,提出了一种具有更高鲁棒性且自适应权值的PCA方法。在PCA方法的基础上建立了一个加权的重建误差和最小模型,通过引入信息熵来调节重建误差的权值;通过交替优化算法迭代求解模型。在Yale人脸库和UCI数据集上的实验表明该方法具有很好的鲁棒性和识别率。Considering the sensitivity of PCA to outliers,a new adaptive weighted PCA is proposed to improve the robustness.Based on PCA,an optimization model by minimizing the weighted reconstruction error is constructed.Information entropy is introduced to adjust the weight of each sample's reconstruction error.An iterative optimization algorithm is used to solve the model.Experiment results on Yale face database and UCI data sets show the robustness and recognition of the method.

关 键 词:特征提取 主成分分析 加权主成分分析 重建误差 鲁棒性 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象