检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨勇[1]
机构地区:[1]广州市市政工程设计研究院,广东广州510060
出 处:《世界桥梁》2012年第1期32-36,共5页World Bridges
摘 要:钢桁梁是双层桥面悬索桥及峡谷地区悬索桥常用的加劲梁形式,该类加劲梁构件众多、阻风面积大,在脉动风荷载作用下的抖振响应非常显著。采用Davenport抖振频域方法对某钢桁梁悬索桥的顺风向、横风向及扭转方向的抖振响应进行分析。抖振有限元频域分析表明:抖振位移主要由加劲梁各方向的1阶振动模态控制,高阶模态的参与效应可以忽略;对于抖振加速度,高阶模态有较大贡献。进一步研究了定常及非定常自激气动力形式对气动阻尼的影响,结果表明准定常自激力描述竖向及侧向模态的气动阻尼具有足够的精度,但描述扭转模态的气动阻尼还存在很大的近似性。The steel truss girder is a type of stiffening girder often used for double-deck sus- pension bridge and the suspension bridge built in valley region. The stiffening girder has lots of components in its section, considerable area of the components exposed to wind and the buffeting response of the girder under the action of plus wind is very significant. In this paper, the Daven- port buffeting frequency domain method is used to analyze the buffeting responses along the wind and in the lateral wind and torsional directions for a steel truss girder suspension bridge. The results of the analysis show that the buffeting displacement is mainly governed by the first order vi- bration mode in all directions of the stiffening girder while the participation effect of the higher order vibration modes can be ignored. As for the buffeting acceleration, the contribution of the higher order vibration modes is great. The influences of the steady and non-steady self-excitation aerodynamic on the aerodynamic drag are studied for further details. The results of the study show that the aerodynamic drag of the vertical and lateral modes described by the quasi-steady self excitation aerodynamic is sufficiently accurate, but the drag of the torsional mode described by the same is still quite approximate.
关 键 词:悬索桥 桁梁 Davenport抖振理论 抖振 气动参数
分 类 号:U448.25[建筑科学—桥梁与隧道工程] U441.3[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112