检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学电气工程学院,四川成都610031
出 处:《信息与电子工程》2011年第6期754-758,共5页information and electronic engineering
基 金:国家自然科学基金资助项目(60674057);中央高校专项资金资助项目(SWJTU09ZT11)
摘 要:聚类分析是非监督模式识别的重要分支,模糊C均值聚类算法(FCM)是其中的一类经典算法,然而该算法以一型模糊集为基础,无法处理数据集以及算法中的不确定性,为此引入区间二型模糊C均值聚类算法(IT2FCM)。二型模糊集处理不确定性的能力强于一型模糊集,基于二型模糊集的IT2FCM在处理不确定性时效果优于FCM算法。文章以图像分割为应用对象,比较IT2FCM和FCM算法的分割效果,实验证明IT2FCM较传统FCM有更好的抗噪性。Cluster analysis is an important branch of non-supervision pattern recognition, and Fuzzy C-Means(FCM) algorithm is a classic algorithm in cluster analysis. However, FCM is founded with Type-1 fuzzy sets, which can not handle the uncertainties existing in data and algorithm itself. This paper introduces the Interval Type-2 Fuzzy C-Means(IT2FCM) algorithm, whose core is type-2 fuzzy set that has better performance on handling uncertainties than Type-1 fuzzy set. IT2FCM and FCM are used for image segmentation to compare their segmentation results. The experiment shows that IT2FCM has better performance on suppressing noise and better effects on segmenting images compared with FCM.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.206.193