检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李延波[1]
机构地区:[1]广西师范学院数学科学学院,广西南宁530001
出 处:《控制工程》2012年第1期128-131,共4页Control Engineering of China
基 金:国家自然科学基金项目(60864001);广西教育厅科研项目(200911LX259)
摘 要:针对一类含有分布时滞和不满足匹配条件的不确定中立型系统,通过利用Lya-punov稳定性理论和线性矩阵不等式(LMI)方法进行了滑模控制研究。首先,选取了依赖于当前状态和状态时滞的滑模面;设计了包含等效控制和非线性切换控制的滑模控制器使得系统满足滑模到达条件,即确保了系统在有限时间内到达滑模面。通过构造适当的Lyapunov函数,利用积分不等式技术,给出了闭环系统渐近稳定的充分条件。该充分条件通过采用虚拟反馈控制思想,结合状态反馈的极点配置方法,转换为线性矩阵不等式的形式,可通过Matlab中的LMI工具箱进行方便的求解。具体算例说明此方法的有效性。Based on the Lyapunov stability theory and the linear matrix inequality (LMI) approach, the sliding mode control for a class of neutral systems with distributed delays and mismatched uncertainties is researched. Firstly, the sliding mode surface depending on the current state and time delays is choosed; Secondly, the sliding mode controller including equivalent control and nonlinear switched control is designed to satisfy the sliding mode reaching conditions. That is, the systems can reach the sliding mode surface in finite time. Finally, the suffient conditions of closed - loop systems' asymptotical stability is given by constructing the appropriate Lya- punov funetionals, using integral inequality technique. In terms of virtual feedback control method and eombinating pole assignment of state feedback, the sufficient conditions can be shown in LMIs and sovled easily by LM1 toolbox in Matlab. A numerical example is given to illustrate the validity of the method.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.104.114