检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学计算机科学与工程系,上海201804 [2]同济大学嵌入式系统与服务计算教育部重点实验室,上海201804
出 处:《计算机科学》2012年第1期23-26,共4页Computer Science
基 金:国家自然科学基金项目(90818023);上海市项目(08GG08;09JC1414200);教育部新教师基金(20090072120048)资助
摘 要:传统的User-based协同过滤推荐算法仅采用了单一的评分相似度来度量用户之间对任何项目喜好的相似程度。然而根据日常经验,人们对不同类型事物的喜好程度往往是不同的,单一的评分相似度显然无法准确描述这种不同。针对上述问题,提出了一种基于用户间多相似度的协同过滤推荐算法,即基于用户间对不同项目类型的多个评分相似度来计算用户对未评分项目的预测评分。实验结果表明,该算法可以有效地提高预测评分的准确性及推荐质量。Conventional user-based collaborative filtering algorithm measures the similarity of two user's favor of any types of items through the single rating similarity.However,daily experience tells us that people usually have different degree on their favor of different types of objects,and obviously the single rating similarity cannot accurately describe this difference.Aiming at this problem,we deeply analyzed the characteristic of user-based collaborative filtering recommendation algorithm,and proposed a collaborative filtering recommendation algorithm based on user's multi-similarity,which describes different similarity of two user's favor of different types of items through the computation of their multiple independent rating similarity for different types of items.The experimental results show that the proposed algorithm,which computes predicted ratings of unrated items on the basis of user's multi-similarity,can effectively improve the accuracy of predicted ratings and enhance the quality of recommendation.
关 键 词:多相似度 协同过滤推荐算法 User-based MAE
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117