基于新型粒子群优化粒子滤波的故障诊断方法  被引量:10

Fault diagnosis based on new particle swarm optimization particle filter

在线阅读下载全文

作  者:陈志敏[1] 薄煜明[1] 吴盘龙[1] 田梦楚[1] 黎绍鑫[1] 赵文科[1] 

机构地区:[1]南京理工大学自动化学院,南京210094

出  处:《计算机应用》2012年第2期432-435,439,共5页journal of Computer Applications

基  金:国防重点预研项目(40405020201);高等学校博士学科点专项科研基金资助项目(200802881017);南京理工大学自主科研专项计划自主项目(2010ZYTS051);南京理工大学紫金之星基金资助项目(AB41381)

摘  要:针对基于粒子群优化算法的粒子滤波(PSO-PF)算法精度不高,容易陷入局部最优,难以满足电厂温控系统故障诊断的需求,提出一种适用于故障诊断的新型粒子群优化粒子滤波(NPSO-PF)算法。该算法引入社会个体对群体的认知规律优化了粒子更新的方式,并且完善了粒子速度的更新策略,对优势速度赋有较小概率的变异,提高了粒子的寻优能力,同时随机初始化劣势速度,保证了样本的多样性。实验结果表明,与PSO-PF相比,NPSO-PF提高了故障检测的精度和鲁棒性,可以有效地应用于温控系统故障的诊断。Particle Fiher based on Particle Swarm Optimization (PSO-PF) algorithm is not precise and easily trapped in local optimum, which can hardly satisfy the requirement of fault diagnosis of temperature control system in power plant. To solve these problems, a new particle swarm optimization particle filter named NPSO-PF suitable for fault diagnosis was proposed. This algorithm introduced the cognition rule of individuals to groups to optimize the method for updating particles and improved the speed update strategy. As a result, the superior particle velocity can mutate with a small probability and improve the search ability. Meanwhile, due to the random, initialization of on inferior particle, the diversity of samples is ensured. The simulation results show that NPSO-PF improves the precision and robustness compared with PSO-PF, and it is suitable for fault diagnosis of temperature control system.

关 键 词:粒子群优化 粒子滤波 温控系统 变异 故障诊断 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象