检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学机电技术研究所,兰州730070
出 处:《铁路计算机应用》2011年第12期29-32,共4页Railway Computer Application
摘 要:针对BP神经网络容易陷入局部极小及收敛速度慢的问题,本文利用粒子群优化算法代替BP算法中的梯度下降法训练神经网络的权重和阈值,有效地改善了BP网络诊断性能;利用训练后的神经网络对齿轮进行了故障诊断,并比较了基于粒子群优化算法与BP算法的诊断结果,通过仿真实验表明:无论是在诊断速度上还是在诊断精度上,PSO-BP神经网络诊断性能都比单独的运用神经网络有很大提高。According to the problem that back propagation(BP) neural network algorithm might easily fall into local minimum and converge slowly,this paper used particle swarm optimization(PSO) algorithm to instead of gradient descent method and train the weights and thresholds of BP network,improved the diagnostic performance of BP neural network Effectively.The neural network trained by PSO was applied to gear fault diagnosis.The diagnostic results between PSO and BP algorithm were compared.Simulating experiments showed that the diagnosis performance of PSO-BP network was better than that of using individual BP network in both aspects of speed and accuracy of gear fault diagnosis.
分 类 号:U29[交通运输工程—交通运输规划与管理] TP39[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.208