检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐海文[1]
机构地区:[1]中国民航飞行学院计算机学院,四川广汉618307
出 处:《计算数学》2012年第1期93-102,共10页Mathematica Numerica Sinica
基 金:国家科技支撑项目(2011BAH24B06);中国民航飞行学院科研基金(J2010-45)
摘 要:邻近点算法(PPA)是一类求解凸优化问题的经典算法,但往往需要精确求解隐式子问题,于是近似邻近点算法(APPA)在满足一定的近似规则下非精确求解PPA的子问题,降低了求解难度.本文利用近似规则的历史信息和随机数扩张预测校正步产牛了两个方向,通过随机数组合两个方向获得了一类凸优化的混合下降算法.在近似规则满足的情况下,给出了混合下降算法的收敛性证明.一系列的数值试验表明了混合下降算法的有效性和效率性.The proximal point algorithm (PPA) is a classical method for solving convex minimization, which frequently finds an exact solution of implicit subproblems. To reduce the difficulty and complexity in computing implicit subproblems, the approximate proximal point method(APPA) establishes an approximate solution of implicit subproblems under some approximate rules. In this paper, two directions were designed by making greater use of historical information of approximate rules and the prediction-correction step length exten- sion with the random number series, and a hybrid descent method(HD Method) for convex minimization was developed through convex combinations of the two directions with the random number series. Subsequently we established the strong convergence of HD method for convex minimization under some approximate rules. Moreover, it is also worth noting that the efficiency of HD method is confirmed through a series of numerical experiments.
关 键 词:凸优化问题 混合下降算法 邻近点算法 近似邻近点算法
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147