检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东师范大学信息科学与工程学院,济南250014 [2]山东师范大学山东省分布式计算机软件新技术重点实验室,济南250014
出 处:《计算机应用研究》2012年第2期693-697,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(60873247);山东省高新自主创新专项工程资助项目(2008ZZ28);山东省自然科学基金重点资助项目(ZR2009GZ007)
摘 要:基于内容的邮件过滤本质是二值文本分类问题。特征选择在分类之前约简特征空间以减少分类器在计算和存储上的开销,同时过滤部分噪声以提高分类的准确性,是影响邮件过滤准确性和时效性的重要因素。但各特征选择算法在同一评价环境中性能不同,且对分类器和数据集分布特征具有依赖性。结合邮件过滤自身特点,从分类器适应性、数据集依赖性及时间复杂度三个方面评价与分析各特征选择算法在邮件过滤领域的性能。实验结果表明,优势率和文档频数用于邮件过滤时垃圾邮件识别的准确率较高,运算时间较少。The nature of content-based e-mail filtering is a binary text classification problem.Feature selection methods reduced the feature dimension before classifying e-mails in order to reduce the cost of computing and storage,while filtering some noise features to improve the classification accuracy.Feature selection was an important factor which decided the accuracy and timeliness of e-mail filtering.However,every feature selection algorithm had different performance in the same environment,and was affected by classifiers and data distribution.Combining characteristics of e-mail filtering,this paper evaluated and analized the following aspects of feature selection methods which used to filter e-mails:classifier adaptability,data set dependence,time complexity.Experimental results show that odds ratio and document frequency have higher accuracy and less computing time when they are used to filter emails.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30