改进GVF的自动Snakes模型  被引量:6

Automatic snakes model based on modified GVF

在线阅读下载全文

作  者:周亚男[1] 程熙[1] 骆剑承[1] 沈占锋[1] 胡晓东[1] 

机构地区:[1]中国科学院遥感应用研究所,北京100101

出  处:《中国图象图形学报》2012年第2期256-262,共7页Journal of Image and Graphics

基  金:国家自然科学基金项目(40971228;40871203);国家科技支撑计划项目(2011BAH06B02)

摘  要:针对Gradient vector field Snakes模型轮廓线需人工初始化的问题及GVF场强分布不合理所导致的模型效率低下和角点定位精度低的问题,在分析GVF场强分布和模型迭代变形原理的基础上,改进原始GVF Snakes模型:模型以SUSAN算法提取的边缘点集构建GVF Snakes模型的初始化轮廓线;并依据图像SUSAN边缘线和模型迭代变形原理局部修正和整体调整GVF场强分布,以符合模型高效迭代变形和对角点、细边缘精确定位的需要。理论分析和实验结果表明,改进GVF的自动Snakes模型提高了模型的计算效率,对细边缘和角点有更高的定位精度。To address issues about the initialization of Snakes' contour, computational inefficiency, and poor positioning accuracy of the traditional gradient vector field Snakes model, an improved GVF Snakes Model is proposed based on the analysis of the distribution and the deformation principle of the model. In the new model, edges axe detected exploiting the SUSAN algorithm firstly: afterwards, a snake contour is initialized using the convex hull generated by the edge points. Then, according to the edges and the deformation principle, the model modifies the distribution of the GVF. Finally, the improved model detects the edges of synthetic images and natural images accurately. The experimental results show that the proposed model not only is efficient, but also has better performance on the weak edges and sharp corners.

关 键 词:梯度向量场 SNAKES模型 SUSAN算法 边缘检测 迭代变形算法 

分 类 号:TP919.81[自动化与计算机技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象