检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴雄军[1] 蒋官澄[2] 赵琳[1] 景海峰[3] 谢水祥[2]
机构地区:[1]中国石油大学(华东)石油工程学院,山东青岛266555 [2]中国石油大学(北京)教育部石油工程重点实验室,北京102249 [3]中国石油大学(华东)计算机与通信工程学院,山东东营257061
出 处:《油气地质与采收率》2012年第1期107-110,118,共4页Petroleum Geology and Recovery Efficiency
基 金:国家科技重大专项"复杂结构井储层损害评价与保护技术"(2009ZX05009-005);国家杰出青年科学基金"洗井;固井;油层等损害与保护"(50925414)
摘 要:径向基(RBF)神经网络法具有网络结构简单、逼近能力强和学习速度快等优点,已成为最具发展潜力的储层敏感性智能预测方法之一,但在实际应用中仍存在泛化能力不强、网络训练不收敛等问题。通过在输入层中引入补充节点,对网络拓扑结构进行优化,有效地提高了RBF神经网络的逼近精度和泛化能力。在确定储层敏感性主要影响因素的基础上,通过对径向基函数散布常数的优选,进一步优化了RBF神经网络的性能。采用所收集的胜利、辽河、大港及江苏油田共125组数据,进行了神经网络训练和预测检验,优化了RBF神经网络,并在储层敏感性预测方面进行了应用。结果表明,对于训练集内的样本,预测的平均准确率均大于93.79%,且预测值与实验值的相关系数均大于0.995;对于训练集外的样本,预测的平均准确率大于91.59%,预测值与实验值的相关系数大于0.994,实现了对储层敏感性的准确、定量预测。RBF (Radial Basic Function) neural network has many advantages,such as simple network structure,strong approaching capability,quick convergence,and so on,which is one of the most promising methods for predicting reservoir sensitivity at present.However,there are still several problems such as bad training convergence and generalization in practical application.By means of the addition of an adequate input node,radial basis function neural network topologies have been optimized.On the basis of determining the reservoir sensitivity influencing factors,via the radial substratu(?) dispersion constant optimization,the network performance is further improved.Adopting the collected 125 groups data from Shengli,Liaohe,Dagang and Jiangsu oilfield,the RBF neural network has been trained and tested,and the application method of the modified RBF neural network in reservoir sensi-tivity prediction is established.Results show that,the new RBF neural network has better applicability.For the samples in the training set,quantitative prediction average accuracy rate of sensitivity index by this method is higher than 93.79%,especially the correlation coefficient between predicted value and experiment values is more than 0.995.For the samples outside the training set,quantitative prediction average accuracy rate of sensitivity index by this method is also above 91.59% ,and the correlation coeffi-cient between predicted value and experiment values is more than 0.994 as well.The new method has effectively realized the goal of accurate and quantitative prediction for reservoir sensitivity.
关 键 词:储层敏感性 径向基神经网络 补充节点 散布常数 训练精度 收敛性
分 类 号:TE353.3[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.155