检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南大学图像处理与模式识别研究所,河南开封475004
出 处:《系统工程与电子技术》2012年第2期292-296,347,共6页Systems Engineering and Electronics
基 金:国家自然科学基金(60972119;60974062);河南省基础与前沿技术研究项目(092300410158);河南大学自然科学基金(2010YBZR045)资助课题
摘 要:针对量测不确定下非线性系统状态估计中多传感器量测数据的有效利用和计算复杂度的简化问题,给出了一种多传感器量测自适应Rao-Blackwellised粒子滤波算法。首先,通过随机采样策略和量测模型先验转移概率实现用于评估粒子权重的传感器有效量测集合的采样;其次,利用重采样步骤和概率最大化原则完成对不含扰动影响传感器量测模型的辨识;最终,依据Rao-Blackwellised粒子滤波中非线性状态分量和线性状态分量的独立求解方式实现当前时刻系统的状态估计。理论分析和仿真实验结果验证了算法的可行性和有效性。Aiming at the effective utilization of multi-sensor observation and the simplification of computational complexity for the state estimation of nonlinear systems in observation uncertainty, a novel multi-sensor observation adaptive Rao-Blackwellised particle filtering algorithm is proposed. Firstly, in the new algorithm, the effective sensor observation set used to measure particle weight is sampled by means of the random sampling strategy and the ohservation model prior transition probability. Then the identification of the sensor observation model without the influence of disturbance is realized on the basis of the re-sampling steps and the probability maximization principle. Finally, according to the independently solving way of nonlinear state component and linear state component in Rao-Blackwellised particle filter, the system state estimation is achieved at current time. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
关 键 词:非线性滤波 多传感器信息融合 Rao—Blackwellised粒子滤波 量测不确定
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62