检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱文材[1] 胡海刚[1] 朱鸣鹤[1] 庞宏磊[1]
出 处:《机电工程》2012年第2期136-141,共6页Journal of Mechanical & Electrical Engineering
基 金:浙江省自然科学基金资助项目(Y1080929);宁波市服务型教育重点专业建设资助项目(sfwxzdzy 200904)
摘 要:为解决BP神经网络收敛速度慢以及容易陷入局部最优解的问题,将遗传算法与BP神经网络相结合应用于轴系故障诊断中。首先设计了船舶柴油机轴系模拟实验平台,然后利用小波包分解技术分析了轴系故障时的振动信号,并将其能谱熵作为故障模式的特征向量,最后对轴系的4种运行状态进行了故障识别与分析。仿真结果表明,GA-BP算法预测精度要高于传统的BP算法,适用于轴系的状态监测和故障诊断。In order to solve the problems of slow convergence rate and falling into local minimum easily of BP neural network, a diagnosis method to combine the neural network with the genetic algorithm was investigated. Firstly,a simulation platform for marine diesel engine shafting was designed. Then,by analyzing the torsional vibration signal in the decomposition of wavelet packet when marine diesel engine's rotating shaft system failed,the energy spectrum entropy of wavelet packet was extracted as the feature vector of failure patterns. Finally,four kinds of operation condition were identified by genetic neural network. The experimental results show that GA-BP can get higher forecast accuracy than the conventional BP in the task of simulation,which is suitable to the condition monitoring and fault diagnosis of rotating shaft system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117