检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北师范大学数学与信息科学学院河北省计算数学与应用重点实验室,石家庄050016
出 处:《计算机工程与应用》2012年第6期134-138,共5页Computer Engineering and Applications
基 金:河北省教育厅自然科学项目(No.2008472;2010259);河北省科学技术研究与发展计划项目(No.072435158D;09213515D;09213575D;09457244D);河北师范大学博士基金资助项目(No.L2006B03);河北师范大学重点基金资助项目(No.L2007Z01);河北师范大学硕士基金资助项目(No.200902003)
摘 要:随着Internet技术的发展,分布式数据挖掘越来越受到重视。分布式数据挖掘急需一种能聚合多种网络功能为通信媒介,松耦合、并行的数据挖掘架构。以分析经典并行数据挖掘模型PADMA和BODHI为基础,结合现实需要给出了一种新的并行分布式数据挖掘模型——PADMAN。模型采用分治策略,将数据挖掘任务进行划分并分配给数据挖掘组,群组之间并行挖掘;基于Agent,使各基本数据挖掘单元具有自治性;群组客户端和全局客户端可实现无线接入,使用户端的使用和接入更加灵活。分治策略的应用,使模型具有良好的模块化和可扩展性。Along with the development of Intemet, distributed data mining is receiving more and more attention. Distributed data mining needs a kind of loose coupling and parallel data mining framework, which can congregate multiple network functions as communication media. Based on the analysis of the classic parallel data mining models PADMA and BODHI, this paper proposes a new parallel distributed data mining model--PADMAN. Divide-and-conquer strategy being used in the model, in which data mining tasks are partitioned and distributed to data mining groups, and different groups process data mining tasks in parallel. Owing to based on agent of this model, all basic data mining units are autonomous. Even more, both group clients and global clients can be connected by wireless network which increases the flexibility for users using or accessing the system. The application of divide-and-conquer strategy equips the model with much better modularization and scalability.
分 类 号:TP311.133.1[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.160.196