检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈一鸣[1] 李裕莲[1] 周志全[1] 汪晓娟[1]
出 处:《燕山大学学报》2012年第1期73-78,共6页Journal of Yanshan University
基 金:河北省自然科学基金资助项目(E2009000365)
摘 要:首先利用保角变换,通过自然边界元法将角形区域的调和方程的Neumann边值问题归化为边界上的变分问题。对于存在着奇异积分的困难,采用了拟小波基。这种小波基在时域中光滑性高且快速衰减,这一性质可以使奇异积分的计算简便。这种小波边界元法不仅能保持自然边界元法的降维及计算便捷稳定的优点,而且还具有良好的逼近精度。最后,给出数值算例,以示该方法的可行性。Firstly, the conformal mapping is introduced in this paper, and the Neumann boundary value problem of Laplace equation in the angle domain is naturalized to the equivalent variational problem on the boundary with natural boundary element method. Because it probably has some difficulty of singular integral, the quasi wavelet bases is used in this paper. This kind of the bases is smoother and weakens faster in the time domain, the character makes the computation of singular integral more convenient. This wavelet boundary element method not only can maintain the advantages of reducing dimensions ofnatttral boundary element method and computation stability, but also has desirable precision. At the end, some numerical examples are presented to show the effectiveness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229