基于不确定波动率的非套利流动模型数值解法  

Numerical solution of a non-arbitrage liquidity model based on uncertain volatility

在线阅读下载全文

作  者:牛成虎[1] 周圣武[1] 

机构地区:[1]中国矿业大学理学院,徐州221116

出  处:《华东师范大学学报(自然科学版)》2012年第1期121-129,137,共10页Journal of East China Normal University(Natural Science)

基  金:中央高校基本科研业务费专项资金(2010LKSX03)

摘  要:通过引入两种不确定波动率,将已有非流动市场下的期权定价模型推广到更一般的情形.由于模型比较复杂,难以求得解析解,通过构建相应的差分方程,讨论了模型的数值解法,并对算法的稳定性、相容性给予了证明.最后,数值实例比较分析了各个变量对期权价格的影响,结果表明,文算法放宽了对步长的要求,在较少的运算量下可以得到较满意的数值结果.The option pricing model in illiquidity markets was expanded to general situations by introducing two kinds of uncertain volatility models. As it is difficulty to get analytical solutions for the model in complicated cases, a numerical solution was discussed by establishing corresponding differential equations; and the stability and consistency of the sdution were proved. Finally, the influence of some parameters to the solution was provided in numerical examples. The restriction on ste-length requirements, and less computation. results show that the algorithm reduced the satisfactrbry approximation can be found with

关 键 词:非流动市场 不确定波动率 数值解 期权 差分格式 

分 类 号:O211[理学—概率论与数理统计] F830.9[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象